
DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering
Roadmap

K. Bloom, W. Brown, V. Innocente, L. Lista, M. Paterno, E. Sexton-Kennedy,

W. Tanenbaum, L. Tuura, and A. Yagil

Revision 1.12

Contents

1 Introduction 3

1.1 Purpose of this Document . 3

1.2 Structure of this Document . 3

1.3 Scope of the Project . 4

1.4 Rationale for the Project . 4

2 Requirements 4

2.1 “Physics Requirements” from the CMS Computing Model 5

2.2 Constraints from Software and Computing Management 6

2.3 The CMS Analysis Model . 6

2.4 Requirements from the HLT . 6

2.5 Grid Computing Support . 6

2.6 Several Typical Use Cases . 6

2.6.1 Case 1: Official Jet Reconstruction with a Cone Algorithm 6

2.6.2 Case 2: Official Jet Reconstruction with a Cone Algorithm 7

2.6.3 Case 3: to be determined . 7

3 Technology 7

4 Architectural Overview 8

4.1 Responsibilities of Subsystems and External Systems 8

4.2 Major Components of the Infrastructure . 8

4.2.1 Architecture of the Event-Processing Application 8

4.2.1.1 Commonalities . 8

4.2.1.2 The Unscheduled Application 9

1

DRAFT
1.1

2

DRAFT
1.1

2

2

4.2.1.3 The Scheduled Application . 10

4.2.2 Architecture of the Event-Data Model 10

5 Analysis 10

5.1 There is more than one source of data . 10

5.2 Lifetime Management of EDProducts . 10

5.3 Unambiguous identification of reconstruction results 11

5.4 Communication between event-processing elements 12

5.5 Input is Not Like Output . 12

5.6 Schedule Specifications for the HLT . 13

5.6.1 Concept Definitions . 13

5.6.2 Facts about Concepts . 13

5.6.3 Example Problem . 13

5.6.3.1 Top (muon) trigger: tµ . 13

5.6.3.2 Top (electron) trigger: te . 14

5.6.4 An Insufficient Solution . 14

5.6.5 A Sufficient Solution . 14

5.7 Event Queries . 15

5.7.1 Definitions . 15

6 Design of the Core Infrastructure 16

6.1 The Event . 16

6.2 EDProducts . 17

6.2.1 Common Bookkeeping Information . 18

6.2.2 Rules for EDProduct-derived Classes 18

6.3 Modules . 19

6.3.1 General Characteristics . 19

6.3.2 Types of Framework Modules . 19

6.3.3 EDProducers . 20

6.3.4 Mixing Modules . 21

6.3.5 Input and Output Modules . 21

6.4 Selectors . 21

6.4.1 Different selection of event products 22

6.5 The Scheduler System . 22

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 3

6.6 The ParameterSet System . 23

6.6.1 ParameterSets . 23

6.6.2 Identifying Parameter Sets . 24

6.6.3 User Creation of Parameter Sets . 24

6.7 Non-Event Data . 24

6.8 Data Management . 24

7 Design of Interfaces to Other Systems 25

8 Development Approach 25

9 Release Management and Testing 25

10 Deployment 25

A Glossary of Terms 26

Bibliography 26

1 Introduction

1.1 Purpose of this Document

This document is a roadmap to aid the re-engineering of the CMS core software: the

event data model (EDM) and framework. It contains many sections that are incomplete,

and will continue to do so for the foreseeable future. It contains discussions of require-

ments, system architectures, design guidelines, details of the design, and plans for the

future.

1.2 Structure of this Document

No section of this document is “final”. All are subject to change.

Sections marked . . .

Commentary from: Marc Paterno

. . . like this

are notes added by one (or more) authors, but which have not yet been “approved” as

an official part of the document. Section marked like this are specially called out as

incomplete sections.

Sections marked with like this:

“Approved on 7 Oct 1571”

DRAFT
1.1

2

DRAFT
1.1

2

4

have been officially approved. This means that we consider the points in such a section

settled. In order to re-open such a point for discussion, one needs to make a persuasive

argument that the related analysis is incorrect or incomplete, and to persuade the others

that some new analysis is better.

In many parts of this document, we refer to several examples of code, configuration

information, and other information. While we strive to make the examples realistic, we

note that we are using them for expository purposes only. We do not intend them to be

taken a candidate physics algorithms, or trigger algorithms.

1.3 Scope of the Project

The project includes two major sets of deliverables:

1. a software framework for the creation of event-processing applications, (called “the

framework”) and

2. a software framework for the representation (both in-program and persistent) of

collider data, both simulated and real, (called “the event-data model”, or EDM).

Included in this project is the required mechanisms to allow event-processing appli-

cations to communicate with external systems that perform the other tasks necessary

to allow efficient processing of event.

Maybe we should put a list of these different systems, or perhaps instead tasks, here?

1.4 Rationale for the Project

Put a statement of the reason for the re-engineering project here.

2 Requirements

We believe a loose definition of “requirements” is most useful. We have not found it

useful to make sharp distinctions between:

1. constraints, such as “the code must compile with GCC 3.4.2”,

2. behavioral or functional requirements,

3. performance requirements, such as “the high-level trigger must accept x events/s

as input, and produce y events/s as output”, and

4. software engineering guidelines, such as the desire for testability.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 5

2.1 “Physics Requirements” from the CMS Computing Model

The CMS Computing Model [1] specified 34 requirements for the CMS Computing

Model. Some of these seem to be of direct relevance to the design of the event-data

model and the event-processing framework.

R-1 The online HLT system must create “RAW” data events containing: the detector

data, the L1 trigger result, the result of the HLT selections (“HLT trigger bits”), and

some of the higher-level objects created during HLT processing.

R-5 Event reconstruction shall generally be performed by a central production team,

rather than individual users, in order to make effective use of resources and to

provide samples with known provenance and in accordance with CMS priorities.

R-6 CMS production must make use of data provenance tools to record the detailed

processing of production datasets and these tools must be useable (and used) by all

members of the collaboration to allow them also this detailed provenance tracking.

R-13 The online system will classify RAW events into O(50) Primary Datasets based

solely on the trigger path (L1+HLT); for consistency, the online HLT sofware will

run to completion for every selected event.

R-22 A crucial access pattern, particularly at startup will require efficient access to

both the RAW and RECO parts of an event.

R-23 The reconstruction program should be fast enough to allow for frequent reprocess-

ing of the data.

R-26 CMS needs to support significant amounts of expert analysis using RAW and

RECO data to ensure that the detector and trigger behavior can be correctly un-

derstood (including calibrations, alignments, backgrouds, etc).

R-27 Physicists will need to perform frequent skims of the Primary Datasets to create

sub-samples of selected events.

R-30 Access to information stored in AOD format shall occur through the same inter-

faces as are used to access the corresponding RECO objects.

R-31 An “Event directory” system will be implemented for CMS.

R-33 Multiple GRID implementations are assumed to be a fact of life. They must be

supported in a way that renders the details largely invisible to CMS physicists.

R-34 The GRID implementations should support the movements of jobs and their exe-

cution at sites hosting the data, as well as the (less usual) movement of data to a

job. Mechanisms should exist for appropriate control of the choices according to

CMS policies and resources.

As other requirements from [1] seem to be needed, we can add them here.

Lacking from the list in [1] is a statement of the required speed of the high-level

trigger.

DRAFT
1.1

2

DRAFT
1.1

2

6

2.2 Constraints from Software and Computing Management

Explicit processing path scheduling must be supported by this system; the system must

support the expression of data-flow paths within job configuration. This feature will exist

to support the trigger, where users of the system directly state a path through which an

event will pass allowing resources to perform the task to be estimated accurately at

program start-up time.

2.3 The CMS Analysis Model

What requirements to we have from the specification of the CMS Analysis Model? What

is the official reference that specifies the CMS Analysis Model?

2.4 Requirements from the HLT

Put stuff here regarding how we want specification of high-level triggers to be done as

independent paths, so that the designer of a trigger doesn’t have to understand other

triggers.

It should also describe that we want the trigger program to combine paths to allow

for optimal execution.

We also require diagnosis of mis-configured trigger programs at configuration (pro-

gram start-up) time.

2.5 Grid Computing Support

The event-processing applications need to be able to work in a grid environment. While

it is not always clear what this really means, we understand it to mean that an event-

processing application must expect to be “packaged” and sent to a target site. The

event-processing application must not make such packaging and submission unwieldy.

We do not expect the event-processing application to directly support any particular

“grid technology”. For example, the event processing application will not itself submit

remote jobs, or request event-data files from remote resources.

2.6 Several Typical Use Cases

2.6.1 Case 1: Official Jet Reconstruction with a Cone Algorithm

This is grossly incomplete; we’ll add more as we understand what we need.

Task Jet reconstruction.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 7

Goal Use a cone algorithm to reconstruct jets, starting from raw data, putting the re-

construction results into the Event.

Actor Physicist who is running the event processing application who wishes to run a

specific cone jet algorithm.

Precondition There already exists a file of events containing raw data. The input and

output configuration are already given (and are outside the scope of this use case).

Description 1. Make available parameter sets for the tower generating module, the

cone jet algorithm, and the jet finder algorithm. We will build calorimeter

towers from raw data, relying on an already-built vertex; Then we will build

cone jets from these towers, recording full provenance information about the

reconstructed information.

2. Express in the task configuration that each of these modules is available

3. Express in the task configuration that the Jets collection production is re-

quired (this assumes demand driven will be chosen for this job

4. Identify the process to which this job belongs and the calibration/alignment

set needs in the job configuration.

5. generate a configuration bundle featuring all the above data

6. use the identifier for the bundle to submit a job using an approved reconstruc-

tion executable

2.6.2 Case 2: Official Jet Reconstruction with a Cone Algorithm

Similar to case 1, but not using official code—rather, using development code, and test-

ing a new algorithm.

2.6.3 Case 3: to be determined

More use cases can go here, if needed. If not, the section title should be fixed.

3 Technology

Put here the technologies we must interact with. For example:

• POOL and ROOT are to be used for persistency.

• PHEDEX is used for . . . what?

• . . . lots of other products are used . . .

DRAFT
1.1

2

DRAFT
1.1

2

8

4 Architectural Overview

4.1 Responsibilities of Subsystems and External Systems

The task of the event-processing application is to process a sequence of collisions (either

simulated or real), with the possibility of producing one or more output files.

Input modules are responsible for obtaining events. Each input module must under-

stand one method of presentation:

• a sequence of event-data files, in the “native format” of the application;

• events presented to the high-level trigger as . . . Put a description of how the raw

data, and the L1 data, are presented to the HLT here.

• What other presentation methods do we need? Events provided over a socket,

rather than a file? Does this even make sense? Are there others?

What is the “atom” of event-data for file handling? Are there any rules applied to

decide whether two events can be in the same file? What non-event data should be

shipped in the file with the event-data?

4.2 Major Components of the Infrastructure

The two major components of the core software are:

• the framework for the event-processing application, and

• the event-data model.

4.2.1 Architecture of the Event-Processing Application

We will support two different “styles” of event-processing application in the same soft-

ware framework. One style of application supports reconstruction on demand, in the

style of the previous ORCA framework. The other style is more “linear”, and is more

similar to the style of the CDF and DØ trigger and reconstruction frameworks. We call

these styles unscheduled and scheduled.

4.2.1.1 Commonalities

For both the unscheduled and the scheduled applications, EDProducer instances are the

objects which actually perform the task of reconstruction. An author of an EDProducer

does not need to choose to support one or the other style of use; any EDProducer is able

to be used in either mode.

For both styles of application, the same EDProduct classes are used, and the same

EDProduct instances will be produced from identically-configured EDProducers.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 9

For both styles of application, the same parameter set system is used to configure

the EDProducers.

For both styles of application, the same input and output formats are supported.

4.2.1.2 The Unscheduled Application

In the unscheduled application, the action of requesting an EDProduct from the Event

may cause the invocation of an EDProducer. The high-level view of the mechanism is:

1. User code requests an EDProduct through the Event::get member template, pos-

sibly specifying a selector.

2. The Event looks for any already-created objects of the correct type (and which

matches the selector, if one was provided). Such objects may be already loaded in

memory, or may be retrieved from the input source.

3. If no match was found, the Event queries a registry of EDProducers to discover

which ones are able to create EDProducts of the correct type (and which could

match the provided selector, if any). If no such matches are found, the user will

receive an indication that no match is available. No new libraries can be loaded at

this time.

4. Any EDProducers found in step 3 are invoked, creating their products and entering

them into the Event, and possibly causing a cascade of other reconstruction.

5. Any EDProducts generated from the EDProducers just invoked are returned to the

user. If no appropriate producers were found, no products may be returned.

An unscheduled application is configured by specifying:

• a selection of independent top-level EDProducts to be written out, or

• a selection of independent high-level triggers to be run, or

• an analysis module to be run, or

• some combination of the above.

and also

• the menu of EDProducers that should be known to the registry of EDProducers.

The combination of EDProducts in the input source and EDProducers registered in

the program are the only things that limit the variety of EDProducts than can be obtained

from any Event.

What other useful ways are there to invoke an unscheduled application?

DRAFT
1.1

2

DRAFT
1.1

2

10

4.2.1.3 The Scheduled Application

A scheduled application is configured by specifying a module instance path through

which the event will flow. More derived or calculated products will be added to the event

as it moves through the path.

The responsibility of getting the proper dependency ordering within an explicitly spec-

ified path lies with person configuring the job.

4.2.2 Architecture of the Event-Data Model

5 Analysis

5.1 There is more than one source of data

Modules in an event processing application obtain different types of data from different

sources. Conditions data come from services. Geometry data come from services. Event

data, and data related to collections of events (such as runs or luminosity blocks) are

passed to the modules during the event processing loop.

5.2 Lifetime Management of EDProducts

It is important that the lifetimes of the EDProducts be controlled in a deterministic

fashion, to avoid resource leaks.

Because the persistent format of the CMS data is based on ROOT, we considered

having the EDProduct instances allocated directly in ROOT buffers. While this has the

beneficial feature of avoiding a memory-to-memory copy of the EDProduct, it has several

drawbacks that made us decide to not choose this design. The drawbacks we identified

are the following.

1. It makes a stronger coupling between the EventPrincipal and ROOT.

2. This couping makes it much harder to create EDProduct instances that will not be

managed by ROOT. This may be important for the high level trigger, which will

process many events that are rejected. Creating and destroying objects in ROOT

buffers, and the detailed management necessary to avoid corruption of the files

created, may waste critical time in the trigger.

3. This coupling would make it much harder to write the same event-data to several

different outputs, whether those outputs are multiple ROOT files or output formats

other than ROOT.

4. This coupling may make the writing of selected (rather than all) EDProducts in an

event to persistent storage.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 11

For these reasons, we believe that the cost of a memory-to-memory copy of those ED-

Products selected for output is less than the cost of the design that avoids that memory-

to-memory copy.

5.3 Unambiguous identification of reconstruction results

It is critical for users to be able to unambiguously identify how each reconstruction

result was produced. There are several varieties of information that constitute this

identification.

Collectively, we refer to all this information as the provenance of the EDProduct. Each

EDProduct is associated with a Provenance object that records this information. Where

appropriate, Provenance objects are shared between EDProduct instances.

1. Module configuration

a) The unique identifier representing all (the names and values) of the run-time

configuration parameters given to the module.

b) A string giving the fully-qualified class name of the module.

2. Parentage

A vector of the unique identifiers of the EDProducts used as inputs for this bit of

reconstruction.

A module can make use of more than one input to create its output. Should we

attempt to specify the types of the EDProduct to which each of the entries in this

vector refer?

Should we perhaps allow a mapping of class name to EDProduct id?

3. Executable configuration

a) A string giving the “human friendly” instance name of the module which cre-

ated the product.

The instance name is unique within the executable—even if there are different

instances of the same class, identically configured, in different paths.

b) A single version number that defines the code for the entire executable. The

user can obtain specific library version numbers by querying a central data-

base, using this version number.

The value is only meaningful for tagged releases.

This number specifies which libraries were available when building the appli-

cation; it does not indicate that all such libraries were used.

DRAFT
1.1

2

DRAFT
1.1

2

12

4. Conditions Data

An identifier representing the calibration and alignment set that was used in the

construction of this EDProduct.

We assume here that calibration and alignment are handled in the same way and

that this single, high-level identifier refers to all the calibration information used

for this event. It is possible that individual calibrations (e.g., silicon, calorimeter,

muon) will also have IDs associated with them and that each of these will need to

be recorded instead of the “set” ID.

Other conditions data IDs may also be needed here, such as geometry version or

hardware configuration.

5. Job configuration

A physical process name. A job starts up in a particular context such as HLT or

Reconstruction. This name identifies the process under which the job was started

and is likely to be a run-time property.

All of this provenance data is distinguished from the event data because its principal

home is in an ancillary database, although a copy may be readily accessible from the

event data (e.g., within the file that contains events).

5.4 Communication between event-processing elements

Clearly the event-processing elements (called here Modules) need to communicate—the

hits produced by one module will be used to form tracks by another. In order to provide

for modular testing, to allow for . . . we require that modules communicate only through

the event—by putting EDProducts into the Event. Furthermore, in order to . . . we require

that one may “cut” the event-processing chain between any two modules, and save the

state of the event at that instant. This requires that all EDProducts be persistable.

While each EDProduct must be persistable, this does not imply each one must be

persisted for every event. The event output mechanism must be capable of selective

writing of EDProduct instances, perhaps to several output streams.

5.5 Input is Not Like Output

There is a lack of symmetry between input and output of events.

In the context of several paths of execution, it is possible to schedule output perhaps

to multiple streams in each path of execution. For example, a single event process-

ing executable might contain a path performing W mass analysis, and a second path

performing tt̄ mass analysis. Each of these paths could usefully write those events

interesting to the analysis to its own stream.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 13

Input of events does not have such a similar use. Each job has a single “driving

source” of events. This source might read several files, perhaps in parallel. The input

still appears to the event processing application as a single stream of events.

For these reasons, we see the need for an input service, which is not a module, and

for output modules.

In general, the framework will invoke the appropriate input service. As a special case,

a mixing module could invoke an additional input service or services.

This list is very incomplete. Please add additional items you think are needed.

5.6 Schedule Specifications for the HLT

This section describes rules regarding module scheduling and configuration within the

HLT.

5.6.1 Concept Definitions

Reconstructor A module whose primary purpose is to perform some step of reconstruc-

tion and to place the result into the Event.

Filter A module whose primary purpose is to render a decision on the quality of an

Event, based on the EDProducts in the Event.

Path The user’s expression of requirements regarding which modules (including their

configurations) make up a single high-level trigger.

5.6.2 Facts about Concepts

5.6.3 Example Problem

The English description of the problem should go into the use cases section.

We consider the problem setting up a HLT program using two triggers:

1. a top–muon trigger (tµ), which looks for a high-pT muon and several jets, and

2. a top–electron trigger (te), which looks for a high-pT electron and several jets.

The tµ trigger uses jets from the midpoint cone algorithm, and the te trigger uses jets

from the kT algorithm.

5.6.3.1 Top (muon) trigger: tµ

This trigger requires tracks from a specific algorithm (module B1), which in turn requires

unpacking the tracking raw data (module A). It also requires jets from the midpoint cone

DRAFT
1.1

2

DRAFT
1.1

2

14

algorithm (module D), which in turn requires unpacking calorimeter data (module C).

Finally, it requires muons (module F), made using tracks from B1.

5.6.3.2 Top (electron) trigger: te

This trigger requires tracks from a specific algorithm (module B2), which in turn requires

unpacking the tracking raw data (module A). It also requires jets from the kT algorithm

(module E), which in turn requires unpacking calorimeter data (module C). Finally, it

requires electrons (module G), made using tracks from B2 and the calorimeter data from

C.

5.6.4 An Insufficient Solution

A simple solution to this problem would be to have the user specify each independent

trigger by specifying the sequence of modules to be run, in the order in which they are

to be run:

• A → B1 → C → D → F for tµ

• A → B2 → C → E → G for te

This solution is inadequate because it does not convey important information that the

user knows and that could be used to compute an optimal schedule. In the case above,

this information is that the calorimeter-based modules (C, D and E) are independent

of the tracking-based modules (A, B1, B2 and F). Because they are independent, the

ordering of the calorimeter-based software and the tracking-based software implied by

the sequences above are not essential. Only the ordering within the tracking set, or the

calorimeter set, is essential.

5.6.5 A Sufficient Solution

The critical observation is that each trigger description (such as those above) can be

composed from strictly linear sequences which are independent of each other, and which

can be combined to produce the full trigger specification.

We see the need for a configuration language richer than the simple one above, which

allows specification of:

• (optionally named) sequences of configured modules, which the schedule builder

may not re-order, (because of implied dependence of later modules on the output

of the earlier modules), and

• combinations of (optionally named) independent sequences, with no implication

regarding the relative order of the constituent sequences.

Furthermore, we want the elements of a sequence to be either individual modules,

or the combinations of independent sequences.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 15

Finally, the schedule builder must be able to read a configuration of the trigger

program written in this language, and to perform “optimizations” which do not change

the meaning of the program, but which avoid redundant execution of any module.

We can capture the essential features of this configuration language via the gram-

mar in Figure 1. The sequence operator “,” is used to express dependencies between

modules. It has higher precendence than the & operator, which is used to combine the

results of independent sequences. ’Decision’ and ’ConfiguredModule’ are terminal

symbols in this grammar.

TriggerTerm ::= PathExpression : ’Decision’
| : ’Decision’

PathExpression ::= PathExpression & Sequence
| Sequence

Sequence ::= Sequence , ProcessingUnit
| ProcessingUnit

ProcessingUnit ::= ’ConfiguredModule’
| (PathExpression)

Figure 1: The configuration grammar for scheduled event-processing applications.

5.7 Event Queries

5.7.1 Definitions

Event The Event is an interface through which one gains access to detector output and

derived quantities that are associated with a single collision.

Selector A Selector is a predicate used to identify interesting EDProducts. It encapsu-

lates the user’s requirements (e.g., features of interest) for products.

Provenance A Provenance carries a snapshot of the data relevant to describing how an

EDProduct was built. It includes (but is not limited to):

1. Description of the configuration of the module that made the EDProduct.

2. Description of the program configuration (e.g., code version).

3. Parentage of the EDProduct (i.e., what other EDProducts were used as “inputs”

by the EDProducer that made the EDProduct).

Note that some, but not all, of this information is available at program configuration

time.

DRAFT
1.1

2

DRAFT
1.1

2

16

Getter A Getter provides an interface through which a single EDProduct is obtained.

Commentary from: Marc and Jim

We think the rest of this section should be removed.

There is more than one variety of event query.

• In EDProducers, the query functions can return only exactly one product. If the

requested product can not be returned, and exception shall be thrown.

• In an analysis module, an addition query interface is available. These queries may

return multiple matching products.

We have not decided what happens if a failure during reconstruction occurs. How

does the data indicate that an algorithm was tried, but failed to complete? Per-

haps we can make the ROOT branch entry contain a 2-tuple, consisting of the con-

structed object (if any) and an error report object (if any). Only one of the two items

would actually appear in any entry.

6 Design of the Core Infrastructure

6.1 The Event

There will be only one Event class.

Purpose: Responsible for managing lifetimes for each EDProduct it contains. Man-

ages relationships between EDProduct and metadata. Provides access to event data

(EDProducts) for any consumer of event data. Allows communication between “mod-

ules.”

A single Event instance corresponds to the detector output, reconstruction products,

and/or analysis objects from a single crossing or the simulation of a single crossing.

Event is a concrete class.

It is possible to allow different Event interfaces, or merely different member func-

tions, some of which perform ROD, and some of which do not.

• Any EDProduct should be immutable after insertion into the Event (see §6.2.2).

• The ParameterSet provenance of input objects to a particular EDProduct should

survive the dropping (dropping means not writing to the output file) of the original

input object.

The Event will use methods of the Selector class (see §6.4) to search for EDProducts

matching a given criterion.

An ancillary class of the Event will keep track of the full invocation sequence

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 17

1. EDProducer::produce,

2. Event::make,

3. Event::get.

This information will be used to build a provenance “record” to be associated with the

EDProduct.

6.2 EDProducts

Purpose: The basic unit of event data managed by the Event.

EDProduct is an abstract base class. Derived classes are also referred to as ED-

Products. Each instance of such a class represents a component of an event, and is

capable of persistence.

Each EDProduct instance has an ID that is unique within the event.

A “map” of the EDProduct instances for an event is kept in the event store.

Commentary from: Luca Lista

Using a generic approach may shield the end user from exposure to the EDProduct

class, allowing the use of any type, not only EDProduct subclasses. This is done, for

instance, in BaBar using the ProxyDict technique [2].

For “bare root” access using native types (or an STL container of native types) instead

of specialized types could also be an advantage.

This is actually already implemented in Marc’s prototype, where the class template

EDProduct<T> inherits from EDProductBase.

Commentary from: Lassi Tuura

My understanding was that this was a design choice, not a technical limitation (i.e.,

users should be aware of EDProduct, and nothing else but EDProduct is allowed into

the store).

After all we started out from a whole stack of proxies.

An EDProduct that needs to be readable by bare ROOT may contain only built-in

data types (e.g., float, double, int), and must have the same shape in its transient and

persistent forms. The data members of such a class should have meaningful names

and allow simple use. Those EDProducts that need not be readable by bare ROOT (e.g.,

raw data) may be packed and may or may not require additional software in order to be

unpacked for browsing.

Each class that represents an EDProduct should be as simple as is feasible (with

respect to the four usage patterns we have documented). In particular, usage pattern

4 objects (i.e., objects that need external data to be usable) should be used only when

necessary (for functionality or performance).

DRAFT
1.1

2

DRAFT
1.1

2

18

EDProducts are often collections, but they are not required to be. They should not be

small.

6.2.1 Common Bookkeeping Information

There are several purposes for saving bookkeeping information:

1. To allow users to identify the EDProduct they want by identifying

a) the type of the EDProduct

b) the name of the “module” instance that created it—this is not merely the name

of the class of that module; it is a name, unique within that executable, that

identifies a particular “module” instance

c) the configuration of the “module” that created it

d) the calibration data used by the “module” that created it

e) the processing step that created it.

f) the release of the software that created it.

This may not be an exhaustive list.

2. To provide summary information that the user can take elsewhere to look at the

actual parameter sets/calibrations/etc.

Sufficient bookkeeping information should be stored to allow re-production of the

same EDProduct instance. This is not yet resolved for simulation products; it may be

sufficient to reconstruct the entire event. There may also be a problem involving re-

gional reconstruction; this seems resolvable by identifying as part of the algorithm the

description of the region on which it acted.

This bookkeeping information will be used by the Selector class (see §6.4). Some

selectors will use all the information to make “perfect matches.” Other selectors can use

some of the information, and then possibly match more than one EDProduct.

Each EDProduct instance must be associated with its bookkeeping information.

6.2.2 Rules for EDProduct-derived Classes

• An EDProduct instance should not depend upon the classes that create it.

• An EDProduct instance should be immutable once it is it is made persistent.

Despite the immutability of an EDProduct, there are two ways in which an EDProduct

in the Event may be augmented:

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 19

• extensible collections: in which new objects may be added to collections already in

the Event.

Commentary from: Brown/Kowalkowski/Paterno

We think that extensible collections are not needed. The functional equivalent can

be provided by allowing “view” objects, which can carry information about objects

in another collection, and which support (external) iteration over the full set of

objects presented in the view.

• decoratable objects in collections: in which a new EDProduct is added to the Event

and is associated with with an EDProduct already in the Event.

In addition, both “puffing” and “refitting” will be supported.

Puffing means expanding existing data in an EDProduct, using no event information

from outside that EDProduct. Outside non-event information (e.g., detector geometry)

used in creating the original EDProduct may be reused.

Refitting means generating a new EDProduct from an older one, using new and dif-

ferent information from outside the original EDProduct.

6.3 Modules

The purpose of a module is to encapsulate a unit of clearly defined event-processing

functionality, in an independently testable and reusable package.

6.3.1 General Characteristics

Here are some characteristics of Modules:

Modules is the generic term for all “workers” in the framework. Not all modules have

the same interface.

Modules are scheduled by the ScheduleBuilder, and invoked by the ScheduleExecuter.

Each Module instance is configured with a ParameterSet.

Modules must not interact directly with (i.e., call) other modules.

Only Modules are “configurable.” An internal algorithm is configured by “percolating”

ParameterSets to the algorithm, by the Module that contains the algorithm.

6.3.2 Types of Framework Modules

Here is a (possibly non-exhaustive) list of framework module types:

• event data producers—reconstruction modules

• mixing

• output

DRAFT
1.1

2

DRAFT
1.1

2

20

• filter

• analyzers (read-only)

Note that input provided by a service, not by a module—see 6.3.5.

6.3.3 EDProducers

The only service of an EDProducer is to produce EDProduct instances and placing them

in an Event. This service is performed by its produce(Event& ev) method.

On invocation a transaction is started.

The EDProducer will create empty EDProducts by asking the Event to make them

Handle<EDP> it = ev.make<EDP>();

At this point, the EDProducer is ready to populate this EDProduct with the real re-

constructed objects.

If its algorithm requires information from the event, it will get it from the event-store

using its get(vector<Handle<EDP2> >& edps, const Selector& s).

The following interface is tentative. We have not resolved all the issues relating to the

responsbilities of the various components. Return types are not yet indicated.

Interface of a EDProducer.

??? beginRun(RunRecord&);
??? beginLumSec(LumSecRecord&);
??? processEvent(Event&);
??? endLumSec(LumSecRecord&);
??? endRun(RunRecord&);

We also expect:

• The Event will provide access to the LumSecRecord to which it belongs, and to the

RunRecord to which it belongs.

• the LumSecRecord will provide access to the RunRecord to which it belongs.

These functions all correspond to “run state transitions”.

There may also be other sorts of transitions, not corresponding to run state transi-

tions:

• beginning and ending of a file,

• beginning and ending of a job,

• other to be discovered.

These transitions are program state transitions.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 21

6.3.4 Mixing Modules

A MixingModule takes in a sequence of const Events and merges corresponding data

objects from each into a single output merged Event which is passed back to the frame-

work. This is its only purpose.

6.3.5 Input and Output Modules

InputModule is an abstract base class.

The InputModule class provides the “interface” to read objects from the “I/O system.”

A “Database” model will be used, that is, specific EDProduct instances will be explicitly

retrieved.

We discussed how the InputModule uses the data management system to deliver

requested events to the “user,” who specifies things like a “process step,” “code version,”

etc. The data management system resolves this to a set of files, but that isn’t enough—

because the user wants only some of the events in those files. The data management

system could also deliver an “event catalog” that says what events are to be included.

We have agreed that an event catalog is important.

CDF notes that a system that requires strict file delivery order causes trouble. Such

an ordering can avoid thrashing on “conditions data.” But the cost has been large for

CDF. Creation of an event directory reduces the need for strict file delivery ordering.

Event directories can live either in the data files (such as an AOD) or in their own

files. Different event directories can refer to the same data files. It seems critical that a

given process use whatever event directory the user “points at.”

6.4 Selectors

Selectors provide the mechanism by which one specifies what pieces (EDProducts) of an

event are of interest. They are the “query mechanism” of the EDM.

The Event uses get methods of the Selector class to search for EDProducts match-

ing a given criterion. Internally, the get methods use the bookkeeping information to

determine which EDProducts are a match.

In its main get method, match(const Handle<EDP>& edp), the Selector will search

in the event store for all EDProduct instances matching Selector.

Event also supports a get(Handle<EDP>& edp, const Selector& s) method that

will produce an error unless there is one and only one EDProduct instance matching s.

If explicit scheduling is being used, the get methods only search the existing event

store. If explicit scheduling is not being used, the get methods will find each matching

EDProduct whether or not it is already in the event store, invoking the appropriate ED-

Producers as needed.

Commentary from: Luca Lista

DRAFT
1.1

2

DRAFT
1.1

2

22

6.4.1 Different selection of event products

The most general selection should provide as result more handles to selected EDProducts.

A possible interface could be:

get(std::vector<Handle<EDP>& handles, const Selector& d)

Nonetheless, it may be frequent to request for a single product using a named selec-

tion, that could be called AliasSelector :

AliasSelector sel("GoldenElectrons");
Event & ev;
Hangle<EDP> & ele;
ev.get(ele, sel);

The AliasSelector object should be instantiated only once at the initialization of the

framework module that hosts the above code

As alternative interface, the above query could be performed using directly a charac-

ter string:

ev.get(ele, "GoldenElectrons");

This could introduce a possible performance reduction due to the search by string

match. On the other hand, it is likely that the object of the class AliasSelector should

become a configurable object, whose actual value has to be set via configuration scripts.

In that case, the instantiation a at the initialization of the module would be mandatory,

and this would make the interface ev.get(ele, sel);, with no string search, more

natural.

6.5 The Scheduler System

The scheduler system is the subsystem in the framework that is responsible for execut-

ing the sequence of reconstruction steps in the appropriate order.

We will use a system that supports two mutually exclusive types of scheduling.

• explicit scheduling

• no scheduling

Which form of scheduling is used is at the option of the user running the program.

The ScheduleBuilder is responsible for organizing the network of modules to be in-

voked, and assuring that they are invoked in the correct order. It builds the schedule

used by the ScheduleExecuter.

Both ScheduleBuilder and ScheduleExecuter are concrete classes.

The ScheduleBuilder is configured by the same system as the EDProducers.

The ScheduleBuilder must know the sequence of EDProducers for each “path,” and

how each EDProducer is configured.

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 23

The ScheduleExecuter must assume that each EDProducer may request stopping of

execution of that “path.”

The ScheduleExecuter deals with “framework tasks,” which may include checking

memory usage between EDProducer invocations.

The ScheduleExecuter should be able to decide what action should be taken upon

each return status of a Filter.

6.6 The ParameterSet System

6.6.1 ParameterSets

Some of the elements in a framework application can be configured at run-time by the

user. All such elements will be configured by a common parameter set system.

A ParameterSet contains a collection of name/value pairs, and provides type-safe

access to them. The contents of a ParameterSet are uniquely identified by a Parameter-

Set id. The contained values can be anything from the following list:

• bool
• long
• std::vector<long>
• double
• std::vector<double>
• std::string
• std::vector<std::string>
• ParameterSet
• std::vector<ParameterSet>

It is important to note that parameter sets can be nested.

ParameterSets used for official production must be registered in a central database.

IDs for such parameter sets must be distinguishable from IDs associated with parameter

sets not registered in the central database.

ParameterSets can also be local; they then are associated with an ID unique within

the data file. Local ParameterSets are stored in the same file as the Events with which

they are associated.

An entire executable should be configured using a single ParameterSet, which con-

tains the many ParameterSets used to configure the Modules within that executable.

Each module should be configured with a single ParameterSet.

There should also be a related system of untracked parameter sets. These are similar

to ParameterSets in how they are presented to the user, but they do not have associated

IDs, and are not tracked in any repository. They are to be used to carry information

which does not need to be tracked in the bookkeeping system. One example of such in-

formation is the verbosity of the logging level used when running a program. Untracked

DRAFT
1.1

2

DRAFT
1.1

2

24

parameter sets should not be used to provide any configuration information that affects

the physics of reconstruction results.

6.6.2 Identifying Parameter Sets

There will be a central authority to assign unique IDs to ParameterSets and to store

those ParameterSets used in official processing. There will be, in addition, a local repos-

itory of ParameterSets, in the event data files themselves. This is needed, in part, to

allow use of reconstruction code without contacting the global authority—for purposes

other than official event processing.

ParameterSet ids are calculated from the contents of the ParameterSet by the MD5

algorithm, giving a 16-byte identifier. This means if two IDs are different, the parameter

sets to which they refer are surely different. If two ParameterSet ids are the same, then

it is very likely, but not 100% certain, that the ParameterSets to which they refer are the

same.

6.6.3 User Creation of Parameter Sets

A set of tools (such as a GUI parameter set editor) will be provided. Such tools are

needed to make creation and manipulation of ParameterSets simple.

6.7 Non-Event Data

To be filled in later.

6.8 Data Management

Commentary from: Luca Lista

The need for input and output modules is specified in section 6.3.5. The main appli-

cations will use POOL data format to write and retreive data. It would be convenient to

allow multiple input and output modules to run concurrently in the same job; multiple

input module, together with an appropriate event mixing module may provide the ability

to mix simulated event with real minimum-bias background; multiple output modules

allow to write to multiple streams or skims, each with a configurable selection of events

and EDProduct to be stored, within the same job.

It could be convenient to encapsulate POOL service as well as input and output tasks

in specific classes. Namely, we could have the classes PoolService to handle common

services, like file catalog and creation of caches (pool::IDataSvc); PoolInput and PoolOut-

put to read and write, respectively to POOL store.

PoolInput and PoolOutput require an access to the event product that may be different

from the one provided by the Event interface. In particular, the user access has to be

DRAFT
1.1

2

DRAFT
1.1

2

CMS Core Software Re-engineering Roadmap (Rev. 1.12) 25

type-explicit, because the base class EDProductBase1 has to be hidden to the user.

PoolInput and PoolOutput could well use EDProductBase polimorphically, without the

unneeded complication to “know” the product types, that is unneeded when managing

data persistency. For this reason, it could be useful to specify a class Store which is

used internally by the class Event, that provided polimorphic access to EDProductBase.

This class should be accessible to PoolInput and PoolOutput with an interface that may

be as simple as:

bool PoolInput::read(Store &);

void PoolInput::write(const Store &);

PoolInput::read(Store &) returns true or false if the event has been read suc-

cessfully or not (end of event collection reached).

Writing at the same time to multiple files requires some implementation subtleties

with POOL references. In particular, if no cross references are present among objects

it could be convienent and efficient to use markMultiwrite on references to EDProduct

selected to be stored; in presence of objects cross-references, in the cases where those

could be required, markMultiwrite does not guaranetee to preserve the correct refer-

ence in multiple files, and the most convenient solution could be to use multiple caches.

To be completed

7 Design of Interfaces to Other Systems

8 Development Approach

To be filled in later.

9 Release Management and Testing

To be filled in later.

10 Deployment

Can we refer to some official CMS document here?

1I noticed that the document doesn’t contain (yet) the architecture of EDProductBase and the templated
subclass EDProduct. This should be included in order to define EDProductBase in this context.

DRAFT
1.1

2

DRAFT
1.1

2

26

A Glossary of Terms

It seems useful to agree up a set of terms to use for the various ideas we have been

discussing. Here is a working list of the terms we have used. This list is an uneven

mixture of items, some of which are very general and some of which are very specific.

EDProduct Abstract base class of “things” stored in the Event.

Sometimes we use the term EDProduct to mean an instance of a concrete class

which derives from EDProduct.

Event A concrete class. Event provides the interface used by Module code (among

other clients) to obtain EDProducts used for input, and also the interface to which

EDProducts are published.

Module Abstract base class of all the “worker units” manipulated directly by the frame-

work.

EDProducer A Module which puts EDProducts into the Event. Often, it will put only

one; it is allowed to put more.

ModuleFactory A ModuleFactory creates Module instances.

Subsystem A subsystem is a loose collection of objects which act together to perform

some clearly identifiable task.

Bibliography

[1] C. Grandi, D. Stickland, L. Taylor, ed., The CMS Computing Model, CERN-LHCC-

2004-035/G-083, CMS Note 2004-031.

[2] E. Frank, ProxyDict Programmers Guide, available at

http://hep.uchicago.edu/∼efrank/talks/ProxyDict.pdf

http://hep.uchicago.edu/~efrank/talks/ProxyDict.pdf

	1 Introduction
	1.1 Purpose of this Document
	1.2 Structure of this Document
	1.3 Scope of the Project
	1.4 Rationale for the Project

	2 Requirements
	2.1 ``Physics Requirements'' from the CMS Computing Model
	2.2 Constraints from Software and Computing Management
	2.3 The CMS Analysis Model
	2.4 Requirements from the HLT
	2.5 Grid Computing Support
	2.6 Several Typical Use Cases
	2.6.1 Case 1: Official Jet Reconstruction with a Cone Algorithm
	2.6.2 Case 2: Official Jet Reconstruction with a Cone Algorithm
	2.6.3 Case 3: to be determined

	3 Technology
	4 Architectural Overview
	4.1 Responsibilities of Subsystems and External Systems
	4.2 Major Components of the Infrastructure
	4.2.1 Architecture of the Event-Processing Application
	4.2.1.1 Commonalities
	4.2.1.2 The Unscheduled Application
	4.2.1.3 The Scheduled Application

	4.2.2 Architecture of the Event-Data Model

	5 Analysis
	5.1 There is more than one source of data
	5.2 Lifetime Management of EDProducts
	5.3 Unambiguous identification of reconstruction results
	5.4 Communication between event-processing elements
	5.5 Input is Not Like Output
	5.6 Schedule Specifications for the HLT
	5.6.1 Concept Definitions
	5.6.2 Facts about Concepts
	5.6.3 Example Problem
	5.6.3.1 Top (muon) trigger
	5.6.3.2 Top (electron) trigger

	5.6.4 An Insufficient Solution
	5.6.5 A Sufficient Solution

	5.7 Event Queries
	5.7.1 Definitions

	6 Design of the Core Infrastructure
	6.1 The Event
	6.2 EDProducts
	6.2.1 Common Bookkeeping Information
	6.2.2 Rules for EDProduct-derived Classes

	6.3 Modules
	6.3.1 General Characteristics
	6.3.2 Types of Framework Modules
	6.3.3 EDProducers
	6.3.4 Mixing Modules
	6.3.5 Input and Output Modules

	6.4 Selectors
	6.4.1 Different selection of event products

	6.5 The Scheduler System
	6.6 The ParameterSet System
	6.6.1 ParameterSets
	6.6.2 Identifying Parameter Sets
	6.6.3 User Creation of Parameter Sets

	6.7 Non-Event Data
	6.8 Data Management

	7 Design of Interfaces to Other Systems
	8 Development Approach
	9 Release Management and Testing
	10 Deployment
	A Glossary of Terms
	Bibliography

